B. Math. (Hons.) IIIrd year Second Semestral examination 2021 Algebraic Number Theory Instructor: B. Sury May 19, 2021; 10 AM - 1 PM. Answer SIX questions INCLUDING Question 1. Be BRIEF!

Q 1. (Compulsory) Let K be a number field. (i) Show that every non-zero ideal of O_K contains a non-zero integer. (ii) Show that every non-zero prime ideal of O_K contains a unique prime number. (iii) Show that there exists $\alpha \in O_K$ such that $K = \mathbb{Q}(\alpha)$. (iv) Prove that $\frac{1+10^{1/3}+10^{2/3}}{3}$ is an algebraic integer. (v) Show that the ring of all algebraic integers is not Noetherian.

Q 2. Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$. Prove that $O_K \neq \mathbb{Z}[\alpha]$ for any $\alpha \in O_K$.

OR

If A is an integral domain for which every non-zero fractional ideal is invertible. Prove that A is Noetherian and integrally closed in its quotient field.

Q 3. Let K, L be algebraic number fields of degrees m, n over \mathbb{Q} . Assume $[KL : \mathbb{Q}] = [K : \mathbb{Q}][L : \mathbb{Q}]$ and that disc O_K and disc O_L are relatively prime. Prove that disc $O_{KL} = (\operatorname{disc} O_K)^{[L:\mathbb{Q}]} (\operatorname{disc} O_L)^{[K:\mathbb{Q}]}$.

Hint. The hypothesis implies that $O_{KL} = O_K O_L$ - you may assume this.

OR

Show that a Dedekind domain with only finitely many prime ideals is a PID.

Q 4. Let α be an algebraic integer whose minimal polynomial is Eisensteinian for a prime p. Prove that p does not divide $[O_K : \mathbb{Z}[\alpha]]$ where $K = \mathbb{Q}(\alpha)$.

\mathbf{OR}

Let A be an integrally closed domain. Let $f \in A[X]$ be a monic polynomial so that f = gh where $g, h \in K[X]$ are monic with K, the quotient field of A. Prove that $g, h \in A[X]$.

Q 5. Consider $L := \mathbf{Q}(\zeta_{p^2})$, where ζ_{p^2} is a primitive p^2 -th root of unity with p an odd prime. Let K be the unique subfield of L which has degree p over \mathbf{Q} . Show that 2 splits completely in K if and only if $2^{p-1} \equiv 1 \mod p^2$.

OR

Let $p \equiv 1 \mod 3$ be a prime. Let $K \subset \mathbb{Q}(\zeta_p)$ be the unique subfield whose degree is 3 over \mathbb{Q} . Prove that a prime $q \neq p$ splits completely in O_K if and only if q is a cube mod p.

Q 6. Let p be a prime of the form $2^n + 1$. If K is the cyclotomic field generated by the *p*-th roots of unity, determine the number of prime ideals lying over 2 in terms of n.

Hint: You may use without proof the Kummer-Dedekind criterion.

OR

If K is a cubic extension of \mathbb{Q} with discriminant -d where 0 < d < 50, prove that O_K is a PID.

Q 7. Let $K = \mathbb{Q}(\alpha)$ where α is the real number $19^{1/3}$. Then $O_K = \{\frac{a+b\alpha+c\alpha^2}{3} : a \equiv b \equiv c \pmod{3}\}$ and the ideal $3O_K = P^2Q$ for some prime ideals $P \neq Q$ (assume this). Prove that the class number of K is a multiple of 3.

OR

Let $p \neq q$ be distinct primes congruent to 1 modulo 4. Assume that p is NOT a square modulo q. Then, prove that the class number of $\mathbb{Q}(\sqrt{pq})$ is even.

Q 8. Determine the fundamental unit of $\mathbb{Q}(3^{1/3})$.

OR

If $p \equiv 1 \mod 4$ is a prime, show that there are integers a, b satisfying $a^2 - pb^2 = -1$.

\mathbf{OR}

Let d be a square-free integer such that for some n, the integer $\frac{4^{n}+1}{d}$ is a perfect square; say u^2 . Prove that $2^n + u\sqrt{d}$ is the fundamental unit of $\mathbb{Q}(\sqrt{d})$ if $\mathbb{Q}(\sqrt{d}) \neq \mathbb{Q}(\sqrt{5})$.